我的科学时代_第九十二章 微积分的故事! 首页

字体:      护眼 关灯

上一页 目录 下一页

   第九十二章 微积分的故事! (第2/4页)

法的求解过程,用一个个三角形去填充s型曲线所围成的面积,最终求出面积大小。

    整个过程极为繁琐,但无比严谨。

    华罗庚求解完成,随即用板刷擦去公式和图形,又重新写下一个新的概念,通过矩形求面积:

    “穷竭法沿用到了十七世纪,这一千多年历史之中,有我国的割圆术求面积,但计算过于复杂,并不适用,穷竭法自身局限性也逐渐明显,对于不同曲线围成的面积需要使用不同的图形去逼近,而不同图形的证明技巧并不一样,极为繁琐,这个时期数学界出现‘用矩形来逼近原图形’,思想与穷竭法一致,且更加简单,但矩形求解存在一个问题,那就是失去了严谨性,这是一个非常严重的情况。”

    严谨是数学的灵魂。

    失去简单性,数学失去很多愚笨者。

    失去严谨,数学将会失去一切。

    如果一个定理,一个公式,一个数学常数失去了严谨性,那意味着整个数学大厦的崩塌。

    余华全神贯注聆听,关于华罗庚讲解的重点,尽数记入脑海之中,理解程度非常迅速。

    “牛顿和莱布尼茨对于矩形求解存在的问题非常重视,经过这两位数学家的不懈研究,牛顿和莱布尼茨意外发现了一个关键性东西,也就是微积分最基本和最重要的核心思想,那就是微分与积分之间的互逆运算,用数学公式表达为微积分基本定理。”

    华罗庚面容严肃,在黑板上写下了微积分基本
加入书签 我的书架

上一页 目录 下一页